2014

WATER QUALITY MONITORING PLAN

STEPHENS DISCOVERY FARM

SITES DUM1 AND DUM4
Water Quality Monitoring Plan

For

MIKE DANIELS
DIVISION OF AGRICULTURE – UNIVERSITY OF ARKANSAS SYSTEM

Monitoring Station DUM1: C.B. Stevens Farms, Inc. 240 Stevens Road. Tillar, AR 71670

DUM1 = AR0411302

Monitoring Station DUM4: C.B. Stevens Farms, Inc. 240 Stevens Road. Tillar, AR 71670

DUM4 = AR0411302

February 17, 2014

Mike Daniels
University of Arkansas
Division of Agriculture
Cooperative Extension Service
Little Rock, AR 72204

*The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.)

Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (VOICE AND TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
Roles and Responsibilities

The following people have been involved in the development of this water quality monitoring plan:

Participant: C.B. Stevens Farms, Inc. 240 Stevens Road. Tillar, AR 71670

Data Collector: Mike Daniels
University of Arkansas
Division of Agriculture
Cooperative Extension Service
Little Rock, AR 72204

Certified Planner: Alice Weeks
Water Quality Engineer
USDA-NRCS
Fort Smith, AR

District Conservationist: Gwen Handcock Desha County
District Conservationist, Desha County
McGehee Field Service Center 3303 Hwy. 65 North
McGehee, AR 71654

Participant – will follow this plan and ensure the monitoring activity is carried out on the identified field(s). The participant is also responsible for meeting any reporting deadlines and will work closely with the data collector in completing operational forms that outline all management practices completed on the monitored field(s).

Data Collector – is responsible for installing and maintaining monitoring system. In addition, they ensure quality data are obtained by following all aspects of the Quality Assurance Project Plan (QAPP). As outlined in the QAPP, data collection, analysis, storage and reporting are performed by the data collector on behalf of the participant. Another key role of the data collector is to hold a yearly meeting with the participant to review what was learned about constituent loads during the year.

Certified Planner – is responsible for reviewing the Monitoring Plan developed by the data collector to ensure all required elements are present. They are also responsible for ensuring the participant understands all aspects of the monitoring activity including site accessibility and duration of monitoring.

District Conservationist – is responsible for maintaining an awareness of what is taking place on the site to ensure monitoring is moving forward in an acceptable manner. They are also responsible for obtaining all reported information from the participant and forwarding this information to the state monitoring specialist for storage, review and certification.
PURPOSE

This monitoring plan identifies the monitoring activities that will be performed on private land controlled by C.B. Stevens Farm within the Desha County Conservation District under the Mississippi River Basin Healthy Watershed Initiative for Middle Bayou Macon watershed. Monitoring is being performed to determine the benefits of irrigation water management at reducing nutrient and sediment in runoff in cotton and corn production.

Site Description

Station Identification and Location Map

The C.B. Stevens farm is a row crop farm (about 1,500 acres), concentrating on cotton and corn and is located in the Middle Bayou Macon Watershed, an approved MRBI project area in Desha County in Southeastern Arkansas (Photo 1):

![Location of the Stevens farm in Desha County Arkansas](http://www.nrcs.usda.gov/wps/portal/nrcs/detail/ar/programs/landscape/?cid=nrcs142p2_034814).

The Bayou Macon Watershed was one of several watersheds approved by NRCS as a Mississippi River Basin Initiative (MRBI) project area.

We will be monitoring runoff from two fields where we will use a paired field approach to compare Irrigation Water Management (Conservation Practice Code 449) to a control. (Photo 2). More specifically, soil moisture sensors will be used to determine irrigation termination for a single, given event as compared to the control, which is the farmer’s experience, as a way of increasing water efficiency by reducing tailwater losses in runoff.
Photo 2. Layout of the C.B. Stevens farm, Tillar, AR.
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Field size, acres</th>
<th>Monitoring device</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUM1</td>
<td>41</td>
<td>ISCO 720 Module and Submerged Pressure Transducer</td>
</tr>
<tr>
<td>DUM4</td>
<td>52</td>
<td>ISCO 720 Module and Submerged Pressure Transducer</td>
</tr>
</tbody>
</table>

Soils Description

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dh</td>
<td>Desha clay, 0 to 1 percent slopes, rarely flooded</td>
<td>20.8</td>
<td>2.1%</td>
</tr>
<tr>
<td>He</td>
<td>Hebert silt loam</td>
<td>299.1</td>
<td>29.7%</td>
</tr>
<tr>
<td>Pe</td>
<td>Perry clay, 0 to 1 percent slopes</td>
<td>20.3</td>
<td>2.0%</td>
</tr>
<tr>
<td>RsA</td>
<td>Rilla silt loam, 0 to 1 percent slopes</td>
<td>40.3</td>
<td>4.0%</td>
</tr>
<tr>
<td>RsB</td>
<td>Rilla silt loam, 1 to 3 percent slopes</td>
<td>72.6</td>
<td>7.2%</td>
</tr>
<tr>
<td>SsA</td>
<td>Sharkey and Desha clays, 0 to 1 percent slopes</td>
<td>530.2</td>
<td>52.7%</td>
</tr>
<tr>
<td>W</td>
<td>Water</td>
<td>23.1</td>
<td>2.3%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td>1,006.5</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>
Photo 3. Soils map for the area of interest for fields DUM1 (shaded with blue) and DUM4 (shaded with yellow).
Existing Crop Production System

Cultural practices in the two cotton fields, DUM1 and DUM4, are summarized in the following table:

<table>
<thead>
<tr>
<th>Cultural Practices</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUM1</td>
</tr>
<tr>
<td>Size (Acres)</td>
<td>41</td>
</tr>
</tbody>
</table>
| Crop | Continuous Cotton | Continuous Cotton
| Fertilizer | N and P is broadcast as commercial fertilizer at the rates of 20 Lbs./A of N and 27 Lbs./A of P once a stand is established. Two weeks later, an additional 89 Lbs./A of N as liquid urea is knifed into the soil in the furrow along the rows. | N and P is broadcast as commercial fertilizer at the rates of 20 Lbs./A of N and 27 Lbs./A of P once a stand is established. Two weeks later, an additional 89 Lbs./A of N as liquid urea is knifed into the soil in the furrow along the rows. |
| Nutrient Management| Because manure is not applied, nutrient applications as commercial fertilizer are guided solely by soil test recommendations provided by the University of Arkansas’ Division of Agriculture. | Because manure is not applied, nutrient applications as commercial fertilizer are guided solely by soil test recommendations provided by the University of Arkansas’ Division of Agriculture. |
| Tillage | Stale seed bed with minimum tillage | Stale seed bed with minimum tillage |
| Irrigation | Groundwater is used to furrow irrigate all fields. Polypipe at the top of the field is used to deliver water from well head to furrows and to ensure equal distribution across furrows, the program PHAUCET was utilized to determine and vary outlet diameter in the poly-pipe across furrows. | Groundwater is used to furrow irrigate all fields. Polypipe at the top of the field is used to deliver water from well head to furrows and to ensure equal distribution across furrows, the program PHAUCET was utilized to determine and vary outlet diameter in the poly-pipe across furrows. |
| Crop Rotation | Continuous Cotton | Continuous Cotton

\(^1\) Indicates an additional step or modification.
Cotton planted on seed beds with furrows in between rows

Irrigation Water Management \textit{(Conservation Practice Code 449)} to utilize soil moisture sensors to terminate irrigation events to reduce tailwater losses to runoff

Control

1 DUM4 was actually in corn in 2013 but will return to cotton in 2014.

Field DUM4 has been in continuous cotton for greater than 10 years whereas field DUM1 was in continuous cotton, except for 2013. The plan is for continuous cotton for the duration of this monitoring project in both fields. However, due to potential disease problems associated with continuous cotton, specifically nematodes, corn may have to be rotated for a year as a means of nematode control. This will occur only if necessary.

Monitoring System

System Description

In lieu of baseline monitoring, we will use a paired-field comparison to test irrigation water management versus a control.

Monitoring on each of the two fields will be comprised of runoff and water flow measured by strategically located gauged flumes. Auto-samplers will be used to collect water samples for analysis of nutrients, and sediments during flow – runoff events. At each field site, surface runoff water leaving a field will be measured at existing discharge points, which are trapezoidal flumes positioned in the drainage ditch at the edge of the field (see Photo 4). These pipes accumulate runoff water leaving a field to one point allowing continuous measurement of flow volumes and rates by automatic stage height and transducer equipment (see Photos 4, 5, and 6).
Photo 4. Trapezoidal flumes at the central drainage or pour point at the edge of the field DUM2. The automated ISCO sampler is housed in the adjacent storage shed and is powered with 12-volt deep marine batteries recharged by solar panels. A similar set up will be installed for fields DUM1 and DUM4.
Photo 5. ISCO 6712 portable automated water sampler that integrates runoff water quality sampling with a stage (water height at calibrated point within the flume) determination accomplished with an ISCO 720 flow module that utilizes a submerged pressure transducer within the trapezoidal flume to measure runoff discharge. The unit is powered by two 12-volt deep marine batteries in parallel and recharged by a solar panel.

Photo 6. ISCO 720 flow module equipped with a pressure transducer encased in submerged probe that automatically determines stage in the stilling well of the trapezoidal flume. The ISCO 720 is a plug and play option for the ISCO 6712 sampler to measure runoff volume.
The application volume of each irrigation event for each field will be measured using an in-line turbine-type flow meter. Polypipe is used to distribute the irrigation water among furrows. (Photo 7)

Photo 7. An in-line, turbine type flow meter to measure application volumes and the polypipe distribution system.

Sampling Protocol

Monitoring will take place year round and the goal of the project is to obtain runoff data from every event. Events include rainfall and irrigation induced runoff. A Field Technician will visit the Stevens site to collect samples within 24 hours of the rain and runoff stopping. The equipment is set up in a way that runoff samples are collected automatically and can notify the Technician via cell phone technology when samples have been taken. Access to the fields will occur to collect samples and periodically to maintain the sites such as mowing and trimming vegetation around our collection equipment. Anytime a Technician will visit the site, we will do our best to inform the landowner prior to going out to the field.

In the case where irrigation is being applied and sample runoff events are anticipated, the source water will be grab sampled for the constituents below at least once at the beginning of the irrigation season and irrigation flow volumes will be recorded from the flow meters for each irrigation.

All runoff event samples will be analyzed for the following constituents:

- NH4-N (Ammonium only required when animal waste is land applied)
- NO2-N + NO3-N (Nitrate + Nitrite)
- TKN (Total Kjeldahl Nitrogen)
- Soluble Reactive P (Orthophosphate)
- TP (Total Phosphorus)
- SSC (Suspended Sediment Concentration)
PARTICIPANT REQUIREMENTS

Miscellaneous Requests for Assistance

The only planned assistance from the landowner would be detailed information, twice yearly if possible on land management, tillage, timing of field operations, nutrient management, planting dates, etc.

Reporting Requirements

Monitoring data provided to NRCS contains Personally Identifiable Information (PII). At a minimum, these data must be transmitted in a zipped and password protected format.

FARMER INVOLVEMENT

Implications of effects of conservation strategies employed on each farm will be evaluated and discussed by the producer, participating scientists, and natural resource managers as appropriate. A final evaluation of water quality changes or improvements at each site may be conducted at the end of the five to seven year evaluation period and at the time of the farm’s graduation out of the program.

System Installation

The Monitoring Conservation Activity Installation Report (Appendix B) will be submitted. An approved Water Quality Monitoring Plan and a QAPP must be submitted and approved as a part of the installation. The historic operations form (Appendix F) should be submitted with the installation report. NRCS must complete a quality assurance check of existing practice management (Appendix F) known as the Annual Field Check form. These forms, along with digital photos1 of the installation, serve as the documentation for the system installation.

Semi-Annual Data Submittal

For each water quality station, rainfall and flow data will accompany electronic (.pdf) copies of the laboratory analysis for each event. Weekly or bi-weekly checklists and/or a log book should provide information about the performance of the monitoring system, specifically noting any malfunctions, gaps in data collection, or conditions that might be useful in interpreting the results of collected data. The operations form (Appendix F) should be completed for the reporting period. An Excel spreadsheet (Appendix A) containing all water quality data for all the events of the reporting period will be submitted. All information in this paragraph is required as the documentation for a semi-annual data submittal.

Annual Submittal

The annual submittal includes all requirements of a semi-annual data submittal for the second half of the monitoring year. In addition, this report will summarize the findings for the year and

1 Maximum allowable photo resolution is 1.9 megapixels (1600X1200). All photographs must be date stamped.
will include a status review with the participant. The data should be summarized in such a way that it is meaningful to the participant. NRCS must complete a quality assurance check of existing practice management (Appendix F) known as the Annual Field Check form. All information in this paragraph is required as the documentation for an annual submittal. The report should include:

1. Summary data – Tabular (Peak and Total Discharge, Precipitation or Irrigation and Load)
2. Graphs – Discharge (cfs), Runoff (inches) and Load (lbs/acre)
3. Interpretation of graphical data
4. Discuss comparison of control and treatment sites
5. Explain Results
 a. Event mean concentration (EMC) vs. discharge
 b. Unexpected events (data outliers)
6. Explain the difference between nutrient inputs and nutrient loads leaving the field (lb/acre)
 a. Physical effects
 b. Biological effects
 c. Economic effects
 d. Potential operational adjustments to reduce off-site loss (must state whether adjustment is allowable at the specific sites being monitored in the document and discuss at meeting)
7. Potential data collection issues
 a. Issues to be resolved
 b. Issues to improve data collection or cooperation in getting quality data
8. Issues associated with data loss or inability to collect data for a time period (due diligence)

Comprehensive Report
A comprehensive report with an executive summary is required at the end of the monitoring period. This report will include a summary of all annual report contents for the period of analysis. Any correlation of in-stream, outlet of the HUC 12 (if these exist) and edge-of-field monitoring should be mentioned. The report should discuss the effectiveness of the practice(s) and any determined statistical significance of the collected data. The report should have a comparison of treated and control sites using graphs and tables to assist in showing load effects relative to discharge and precipitation or irrigation applied. All information in this paragraph is required.
The report should include:

1. Summary data – Tabular (Peak and Total Discharge, Precipitation or Irrigation and Load)
2. Graphs – Discharge (cfs), Runoff (inches) and Load (lbs/acre)
3. Interpretation of graphical data
4. Discuss comparison of control and treatment sites
5. Active in-stream monitoring within HUC-12 or smaller watershed where edge-of-field monitoring occurred.
 a. Station location
 b. Time frame of secondary data
 c. Graphics and text explaining any statistical correlation between practice and in-stream data on activity constituents.
6. Practice(s) effectiveness evaluation
 a. Statistical analysis used (describe any data transformations)
 b. Results of analysis
 i. Event mean concentration (EMC) vs. discharge
 ii. Unexpected events (data outliers)
7. Explain the difference over the monitoring period between control and treatment for nutrient inputs versus nutrient loads (lb/acre) and sediment yields (tons/acre) leaving the field. The report should make a connection between off-site nutrient and sediment loss and the following:
 a. Physical effects
 b. Biological effects
 c. Economic effects
 d. Potential operational adjustments to reduce off-site loss (must state whether adjustment is allowable at the specific sites being monitored in the document and discuss at meeting)
8. Implications of Statistical Analysis
 a. Was practice(s) effective?
 b. If not, what is the reasoning?
 c. Any suggested changes to improve practice effectiveness on similar sites to those monitored.
MONITORING TIMELINE

<table>
<thead>
<tr>
<th>Due Date</th>
<th>Tract</th>
<th>Field</th>
<th>Station ID</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1/2014</td>
<td>DUM1</td>
<td></td>
<td>Monitoring equipment installed</td>
<td></td>
</tr>
<tr>
<td>4/1/2014</td>
<td>DUM4</td>
<td></td>
<td>Monitoring equipment installed</td>
<td></td>
</tr>
<tr>
<td>1/15/2015</td>
<td></td>
<td></td>
<td>Prepare annual report</td>
<td></td>
</tr>
<tr>
<td>1/31/2015</td>
<td></td>
<td></td>
<td>Meet with participant to discuss 2014 data</td>
<td></td>
</tr>
<tr>
<td>7/15/2015</td>
<td></td>
<td></td>
<td>Prepare annual semiannual report</td>
<td></td>
</tr>
<tr>
<td>7/31/2015</td>
<td></td>
<td></td>
<td>Meet with participant to discuss data</td>
<td></td>
</tr>
<tr>
<td>1/15/2015</td>
<td></td>
<td></td>
<td>Prepare annual report for participant</td>
<td></td>
</tr>
<tr>
<td>1/31/2016</td>
<td></td>
<td></td>
<td>Meet with participant to discuss 2014 data</td>
<td></td>
</tr>
<tr>
<td>7/15/2016</td>
<td></td>
<td></td>
<td>Prepare annual semiannual report</td>
<td></td>
</tr>
<tr>
<td>7/31/2016</td>
<td></td>
<td></td>
<td>Meet with participant to discuss data</td>
<td></td>
</tr>
<tr>
<td>1/15/2017</td>
<td></td>
<td></td>
<td>Prepare annual report for participant</td>
<td></td>
</tr>
<tr>
<td>1/31/2017</td>
<td></td>
<td></td>
<td>Meet with participant to discuss 2015 data</td>
<td></td>
</tr>
<tr>
<td>7/15/2017</td>
<td></td>
<td></td>
<td>Prepare annual semiannual report</td>
<td></td>
</tr>
<tr>
<td>7/31/2017</td>
<td></td>
<td></td>
<td>Meet with participant to discuss data</td>
<td></td>
</tr>
<tr>
<td>1/15/2018</td>
<td></td>
<td></td>
<td>Prepare annual report for participant</td>
<td></td>
</tr>
<tr>
<td>1/31/2018</td>
<td></td>
<td></td>
<td>Meet with participant to discuss 2013 data</td>
<td></td>
</tr>
<tr>
<td>7/15/2018</td>
<td></td>
<td></td>
<td>Prepare final report</td>
<td></td>
</tr>
<tr>
<td>7/31/2018</td>
<td></td>
<td></td>
<td>Meet with participant to discuss final report</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D

NRCS QUALITY ASSURANCE PROJECT PLAN

Edge-of-field Monitoring of Effects of Implementing Conservation Practices on Nutrient and Sediment Runoff in the Middle Bayou Macon Watershed Project Directed by the Desha County Conservation District

Prepared for:
Steve Stevens, 240 Stevens Road. Tillar, AR 71670

Prepared by:
Mike Daniels
University of Arkansas
Division of Agriculture
Cooperative Extension Service
Little Rock, AR 72204

February 17, 2014
Table of Contents

SECTION 1.0 – Project Overview and Objectives... pg#
SECTION 2.0 – Project Organization and Management... pg#
SECTION 3.0 – Monitoring Approach ... pg#
SECTION 4.0 – Sample Procedures .. pg#
SECTION 5.0 – Testing and Measurement Protocols .. pg#
SECTION 6.0 – Quality Assurance / Quality Control (A/QC) .. pg#
SECTION 7.0 – Data Handling Procedures ... pg#
SECTION 8.0 – Assessment and Oversight ... pg#
Quality Assurance Project Plan (QAPP)

SECTION 1.0: PROJECT OVERVIEW AND OBJECTIVES

This project will be performed on private land controlled by Steve Stevens within the Point Remove Wetlands Reclamation and Irrigation District under the Mississippi River Basin Healthy Watershed Initiative. Edge-of-field monitoring will occur on two fields on the Stevens Farm, Tillar, Desha County. The monitored fields will be under continuous cotton rotation, with the lone exception being a potential, unplanned, single season corn rotation that may be necessary to control nematodes. The monitoring will assess the impact of irrigation water management (Conservation Practice Code 449) by using a paired-field comparison of irrigation water management (DUM4) to a control (DUM1). Specifically, we will compare the use of soil moisture sensors as a way of terminating an irrigation event to reduce tail-water losses as runoff. Crop yields will also be obtained from the participant to determine the crop production benefits of these conservation measures.

Overall, we will determine the cost-effectiveness of qualified conservation practices on at reducing nutrient and sediment runoff in the Middle Macon Bayou watershed.

SECTION 2.0: PROJECT ORGANIZATION AND MANAGEMENT

2.1 Project Contacts

Table 2.2. Project Roles & Responsibilities

<table>
<thead>
<tr>
<th>Individual(s)</th>
<th>Responsible for:</th>
<th>Authorized to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike Daniels, Professor,</td>
<td>• Program implementation</td>
<td>• Manage project</td>
</tr>
<tr>
<td>Phone: (501) 671-2281</td>
<td>• Data interpretation</td>
<td>• Action</td>
</tr>
<tr>
<td>Cell: (501) 944-0995</td>
<td>• Report compilation</td>
<td></td>
</tr>
<tr>
<td>Email: mdaniels@uaex.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mike Daniels, Professor,</td>
<td>• Data collection</td>
<td>• Manage sites</td>
</tr>
<tr>
<td>Phone: (501) 671-2281</td>
<td>• Sample collection</td>
<td>• Collect samples</td>
</tr>
<tr>
<td>Cell: (501) 944-0995</td>
<td>• Spreadsheet preparation</td>
<td>• Identify and correct field issues</td>
</tr>
<tr>
<td>Email: mdaniels@uaex.edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarra Simmons, Program Technician</td>
<td>• Sample preparation for analysis</td>
<td>• Conduct sample analysis</td>
</tr>
<tr>
<td>Phone: (479) 575-3623</td>
<td>• Sample analysis</td>
<td>• Report any errors or issues in the laboratory</td>
</tr>
<tr>
<td>Email: tarra@uark.edu</td>
<td>• Compilation of results</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 3.0: MONITORING APPROACH

1. Monitoring design
Monitoring at each site will be comprised of runoff and water flow measured by strategically located trapezoidal flumes specially designed to measure agricultural runoff. Auto-samplers will be used to collect water samples for analysis of nutrients, and sediments during flow – runoff events. At each field site, surface runoff water leaving a field will be measured at existing discharge points, using a trapezoidal flume. These flumes accumulate runoff water leaving a field to one point allowing continuous measurement of flow volumes and rates by automatic stage height and transducer equipment. Irrigation application volumes will be determined for each event using an inline, turbine-type flow meter.

A paired field comparison with one field (DUM4) utilizing irrigation water management, Conservation Practice Code 449 and the other field (DUM1) serving as a control, will be utilized to determine the effects of irrigation water management on sediment and nutrient losses in runoff as well as water use.

2. Location

Stevens farm location.
3. Monitoring duration and frequency

All runoff events induced by either rainfall or irrigation on any given field will be monitored and runoff samples and flow collected. Flows will not be monitored and samples not collected during freezing conditions due to the potential very expensive damage that can be caused if transducers or water in samplers freezes. The periodicity of sample and data collection is dependent of local weather conditions and then number and extent of monitored events cannot be estimated from year to year. However, irrigation-induced runoff is easier to predict and will be dependent of when crops need irrigating.

4. Major agricultural pollutant of concern of the HUC12

The pollutant of concern in this HUC12 is the nutrients nitrogen and phosphorus and suspended sediment.

5. Irrigation source water quality

Irrigation source water quality will be determined by taking a sample of irrigation water used for each irrigation event. The irrigation water sample will be treated the same as runoff water and the same analytes will be determined.
6. *Constituents to be monitored*

All runoff event samples will be analyzed for the following constituents:
- NH4-N (Ammonium only required when animal waste is land applied)
- NO2-N + NO3-N (Nitrate + Nitrite)
- TKN (Total Kjeldahl Nitrogen)
- Soluble Reactive P (Orthophosphate)
- TP (Total Phosphorus)
- SSC (Suspended Sediment Concentration)

7. *Practice(s) being monitored*

Practices monitored include;

Irrigation management CPS 449

All these practices are designed to prevent, control, or trap nutrients and sediments, which have been identified as pollutants of concern in this watershed.

8. Estimated potential adoption and application of the monitored practices is about 1,000 acres.
SECTION 4.0: SAMPLE PROCEDURES

Water quality sampling station at the Stevens farm.
Sampling equipment at each monitored site. ISCO 6712 auto samplers will be used at all sites coupled with an ISCO submersible pressure transducer.

Cotton Field monitored at the Stevens farm.
1. Sample collection: Water

At each field outlet site, an automatic water sampler (ISCO 6712 Full Size Portable Sampler) is installed to collect runoff samples at predetermined intervals during a discharge event (see Photos 4, 5, and 6). Runoff from the field is measured by an ISCO 720 Module and pressure transducer encased in a submerged probe located in a tilling well within the trapezoidal flume located at the central drain point at the bottom of the field. A water sample is collected on a unit flow basis, such that a composite flow-weighted sample for the whole discharge event is obtained. This sample is collected from the auto-sampler within 24 hours of collection for determination of N, P, and sediment concentration, as described below.

For row crop situations where irrigation is utilized, irrigation inflow will be measured with in-pipe flow meters to determine application rates and cumulative irrigation volume.

A weather station that is linked to the ISCO sampler data logger will be located at the site to determine rainfall amounts at 5 to 15 minute intervals. All samplers and flow meters have been calibrated to factory specification, given the dimensions of the pipe they are located in. Any unexpected response in the sampler, flow meter or weather station will be immediately noted and corrected.

Automated water samplers will be programmed to deliver a composite water sample into a clean, acid washed polyethylene bottle. Water samples will then be placed in clean, acid washed polyethylene bottles with caps and labeled with site number, date, time and collector’s name and transferred as quickly as possible to the certified laboratory. Samples for dissolved P, nitrate-N and ammonium-N will be filtered through a 0.45 μm membrane into a sterile glass vile and stored at 4 °C in the dark along with unfiltered samples, within 24 hours of collection. Dissolved P, nitrate-N, and ammonium-N will be determined colorimetrically by standard US EPA methods. Total N and P will be determined by the same colorimetric methods after Kjeldahl digestion of an unfiltered water sample. Particulate P is calculated as the difference between total and total dissolved P. The suspended sediment concentration of collected runoff water samples is determined gravimetrically as the difference in weights between oven-dried (105 °C) unfiltered and filtered samples.

2. Sample collection: Soil

Soil samples will be collected at a depth of 6” each spring. A sub-sample will be taken for analysis. Samples can be held indefinitely once thoroughly mixed and air-dried. The samples will be delivered to the University of Arkansas Soil Testing Laboratory where they will be analyzed. Analysis will include Mehlich-3 soil test P.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Container</th>
<th>Volume</th>
<th>Preservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehlich-3 soil test P</td>
<td>Paper box (new)</td>
<td>1 Pint</td>
<td>Air dry within 2 days and store at room temperature</td>
</tr>
</tbody>
</table>
3. **Sample processing**

All samples must be labeled at the time of collection. The label must contain at a minimum the following items: the location; the date taken; and the type of sample.

Field notes must contain at a minimum the same information as the sample tag and any field measurements and other information necessary to reconstruct the sample collection process. All entries should be signed and all pertinent field notes should be transferred to laboratory files.

The sample collector is responsible for the care and custody of the samples until they are transferred to the laboratory. The sample collector must provide the proper storage conditions and insure the delivery of the samples within the permitted holding times. The samples must be in his physical possession or in his view or stored in a controlled place at all times.

4. **Laboratory custody**

All samples received in the laboratory will be recorded in a laboratory logbook with the sample description, date and time of collection, name of person collecting sample, the date and time received and the person receiving the sample.

The Program Technician will receive the samples and is responsible for labeling the samples with the proper laboratory identification number and distributing the samples to the laboratory personnel, or storing samples under the appropriate conditions. In the event of the Program Technician’s absence, the PI Mike Daniels via Andrew Sharpley will designate a substitute.

The laboratory personnel are responsible for the care and custody of a sample once it is assigned to them.

Once sample analysis is completed, the unused portion of the sample, with identifying labels and any other documentation must be returned to the Program Technician for disposition. Samples should never be destroyed without and order from the PI, Mike Daniels. All sample records will be retained as part of the laboratory’s permanent record.

SECTION 5.0: TESTING AND MEASUREMENT PROTOCOLS

Variable: Total Phosphorus
Medium: acid digests of water and litter
Units: mg/L (for water), mg/kg (for litter)
Practical Quantitation Limit: 0.02 mg/L
Test Method: Persulfate Digestions and ascorbic acid method for analysis, EPA 4500 P and EPA 365.2

Variable: Dissolved reactive (Ortho) Phosphorus
Medium: water and water extracts of litter
Units: mg/L (for water), mg/kg (for litter)
Practical Quantitation Limit: 0.005 mg/L
Test Method: Ascorbic acid method for analysis, EPA 365.2
Variable: Total Nitrogen
Medium: acid digests of water and litter
Units: mg/L (for water), mg/kg (for litter)
Practical Quantation Limit: 0.1 mg/L
Test Method: Persulfate Digestions and alkaline phenol and hypochlorite colorimetric method for ammonia, EPA 4500 and EPA 350.1

Variable: Nitrate Nitrogen
Medium: water
Units: mg/L
Practical Quantation Limit: 0.1 mg/L
Test Method: Brucine sulfate method for colorimetric analysis, EPA 352.1

Variable: Ammonium Nitrogen
Medium: water
Units: mg/L
Practical Quantation Limit:
Test Method: Semi-automated alkaline phenol and hypochlorite colorimetric method for ammonia, EPA 350.1

Variable: Total solids
Medium: water
Units: g/L
Practical Quantation Limit: 0.01 g/L
Test Method: Gravimetric analysis, EPA 160.4

SECTION 6.0: QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)

1. Quality control requirements
The quality of data from the laboratories will be assured by a system of internal checks. These include equipment checks, reagent checks, and laboratory performance checks. The results of these checks will be recorded to verify the operation of the quality control system and to monitor any changes that occur.

2. Control limits for QC checks
Samples will be re-run if the average duplicate recovery is not between 95 and 105% or the average recovery is not between 90 and 110%.

3. Laboratory Performance Checks
All chemical analyses will be checked for precision by the analysis of duplicate laboratory samples. The frequency of duplicate analysis will be approximately one in ten samples. At least one duplicate analysis must be done each day a parameter is run. The results of the analyses must be recorded and filed with the Program Technician.
All chemical analyses possible will be checked for accuracy by the analyses of spiked samples. The frequency of spiked sample analyses will be approximately one in 20 samples. These spiked samples will be prepared by the addition of a known amount of the substance to an aliquot of the duplicate sample. The results must be recorded on the spike sample sheet and control charts and filed with the Program Technician.

Check samples from an outside source will be analyzed biannually. Either samples from EPA or commercially prepared samples will be used. The analyst should perform the analysis without knowing the expected value.

In the event that problems are discovered with a specific laboratory analysis, the Program Technician will contact Mike Daniels and discuss the problem. Appropriate action will be taken to solve the problem. These problems and corrective actions taken will then be reported to the NRCS QA Officer.

4. **Instrument equipment testing, inspection, and maintenance requirements**

A notebook will be kept on each piece of equipment in the laboratory, which includes information on maintenance. All equipment testing, inspection and maintenance follows the guidelines detailed in the Standard Operating Procedures of the laboratory.

Analytical balance

All analytical balances must be cleaned weekly and immediately after any chemical spills. The balance table must be kept neat and cleaned after any spills. All analytical balances must be cleaned and checked annually or whenever a problem is found.

Inductively coupled plasma emission spectrophotometer

The preventative maintenance schedule is followed as recommended by the manufacturer. The following spare materials should be maintained in hand; (1) glass fiber optics and (2) an additional torch.

Technicon AutoAnalyzer II

Double-distilled water should be pumped thoroughly through the tubing at the end of a run. Pump tubing should be replaced immediately upon sign of wear. All colorimeters should be turned off, and the pump platen removed at the end of a run. The pump should be oiled with light weight oil as needed.

5. **Instrument Calibration and Frequency**

All instruments and equipment will be calibrated according to the manufacturer's recommended procedures and the guidelines in the Handbook for Analytical Quality Control in Water and Wastewater Laboratories, EPA-600/4-79-019. In addition, the following specific procedures will be followed.

The Inductively Coupled Argon Plasma Emission spectrophotometer must be calibrated initially with a minimum of two standards, a blank and a mixed standard of analytes. Linearity above the
high standard should be checked by analyzing known standards. Check standards should be run approximately every 10 samples, and should fall within 10% of expected values. If not, stop sample analysis, correct any problems, and recalibrate. Samples run just prior aid termination of analysis should be reanalyzed.

6. Validation and Verification Methods

The precision, accuracy and completeness of laboratory data will be inspected immediately after the analyses are performed. Data from duplicate and spiked samples will be recorded and plotted on quality control charts to assure that the results are within the acceptance limits.

The precision, accuracy and completeness charts are designed to hold approximately one month’s data. New charts will be started each month. Records and charts will be reviewed by the PI, Mike Daniels.

The laboratory control checks will consist of laboratory duplicates to contain 10% of total samples on each run. These checks will monitor the levels of precision and accuracy of the collection and analytical processes. Duplicates will fall within 10% of the expected values to be considered valid. In addition, after every 30 samples, a laboratory standard and an EPA certified standard will be run to check accuracy. These standards must also fall within 10% of expected values.

These values will be calculated at the end of each daily run. In the event that the QA does not meet these requirements, then the data will not be used.

SECTION 7.0: DATA HANDLING PROCEDURES

Subsection 7.1: Methods for Data Acquisition and Storage

Monitoring data provided to NRCS contains Personally Identifiable Information (PII). At a minimum, this data must be transmitted in a zipped and password protected format.

Data will down loaded from the data logger on the ISCO samplers to a laptop by the Field or Program Technician at routine intervals to ensure no flow and rainfall data is lost. All of the field data is transferred to the bench sheets where analytical data is recorded.

Precision and accuracy of data checked and results are recorded on quality assurance charts. Data is reviewed for completeness and arithmetical errors and prepared for data processing. Data is entered into a computer file. A printout of entered data is obtained and manually checked against laboratory forms and the data will be scanned for out-of-range values.

Data will be stored as an Excel file on a desktop in the laboratory and on a backup external drive. Hard copies of laboratory data report will also be kept on file. Field log books will be kept in the laboratory. Information on land management and cultural practices provided by the landowner will be entered into an Excel spreadsheet and kept on the laboratory computer.

Subsection 7.2: Methods of Analyses

NRCS QAPP
The precision and accuracy of a test method will be determined by analyzing samples to which known quantities of standard substances have been added. The procedures used will follow those described in APHA Standard Methods of Examination of Water and Waste Waters, Edition 18, Section 1020B. The average spike recovery for a given day must fall within 95% - 105% recovery to be considered acceptable. Least significant differences (LSD) after NOVA will be used as a statistical consideration for assessment of nutrient and metals reductions since LSD after NOVA has indicated that a significant difference at the 0.05 levels exists. Control charts will be continuously maintained for each test method and updated quarterly.

Completeness will be determined as the ratio between the number of samples received vs. the number satisfactorily completed. This ratio will be expressed as a proportion or percent. Completeness for laboratory standards will be expressed as a proportion or percent of standards, spikes and duplicates which fall within the criteria established for precision and accuracy (see above section). The completeness goal is at least 90%.

Completeness charts will be continuously maintained for sample sets as part of the chain-of-custody information. If completeness requirements are not met for any parameters then the samples will be rerun or the simulations will be repeated as deemed necessary.

Subsection 7.3: Data Analysis

Flow data for each runoff event will be downloaded from the ISCO sampler to a field laptop computer. Peak and total flows for each event will be determined. A single water sample for each runoff is collected by the ISCO sampler. ISCO samplers are programmed to collect a 250 mL sample every 1000 gallons of water passing through the monitored culvert. This sampling protocol will give one sample per event and will provide a flow-weighted value.

Flow-weighted nutrient and sediment concentrations for each runoff event will be multiplied by total flow for that event to calculated event nutrient and sediment discharge. Data for nutrient and sediment fate and transport form each field will be reported as flow-weighted concentration and load or loss per unit field area.

Due to the unique soil, hydrologic, and flow properties of the monitored fields, each site will be considered a treatment and not paired replicates. Flow-weighted concentrations and loads for each event during a calendar year among treatment sites will be compared by analysis of variance.

SECTION 8.0: ASSESSMENT AND OVERSIGHT

Visual inspection of field monitoring sites will be made at the time of sample collection. Any debris that may be influencing flow readings will be removed. Periodic site maintenance visits will ensure a timely correction of any site disturbance that could potentially influence flow estimation.

If a particularly large rainfall / storm is predicted the sample interval can be increased to collect a sample when a larger volume of water has passed though the monitoring site. For instance, the 1000 gallon sampling volume can be increased to 2000 or 3000 gallons depending on weather predictions and field experience. In this way we will better ensure the likelihood of the sampler capacity not exceeding the flow event.
An internal annual review of the monitoring process will be conducted. A checklist or series of questions will be developed to determine if the methods outlined in the QAPP are being followed for each storm and if not, why and what actions were taken to resolve any issues.

Sampling protocols are such that it is not expected that the 48 hour sampling holding times will be exceeded for dissolved P measurement. In the cases where these times are exceeded, the sample log will be noted but chemical analysis will proceed as normal.